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SEMIDIURNAL HOUGH MODE EXTENSIONS IN THE
THERMOSPHERE AND THEIR APPLICATION

I. Introduction

In Hong and Lindzen (1976) a general computation of the semi-

diurnal tide in the thermosphere was presented in detail. It was

noted in that paper that the semidiurnal tide in the thermosphere

was primarily forced from below, though at sunspot maximum tides from

below were severely attenuated in the thermosphere so that in situ

thermospheric forcing was of comparable importance for the semidiurnal

tide in the upper thermosphere (above 200 kin). In all cases, the

lower thermosphere was dominated by higher order Hough modes whose

origin is primarily the troposphere and mesosphere. The presentation

of results in Hong and Lindzen (1976) was made particularly difficult

by the fact the amplitudes and phases of the higher order modes (2,3:

2,4: 2,5) were sensitive to detailed variations of the wind and

temperature below 100 km - variations which could occur within a

single season. To a lesser extent this sensitivity holds for the

2,2 mode itself. Thus, it was obvious that observers might need

information on the upward extension of individual Hough modes incident

on the thermosphere at, say, 100 km. Such information could permit

observers to deduce the global implications of observations at a

Note: Manuscript submitted January 4, 1977.



few stations. Unfortunately, it is difficult to present such in-

formation in a compact form since the linearized equations for tides

in the thermosphere are no longer separable in their latitude and

altitude dependence due to the presence of ion drag and molecular

viscosity; i.e., the latitude structure of a given mode forced below

100 km will change with height above 100 km or; equivalently, vertical

structure will vary with latitude. Moreover, such 2-dimensional

structures will vary with solar cycle insofar as ion drag (proportional

to electron density) and neutral temperature vary with the solar

cycle. To present the upward extension of a single mode at sunspot

minimum and maximum has required 24 fairly detailed diagrams, and

extensions of four modes are necessary. In addition we must include

16 additional diagrams which display the atmospheric response to

in situ EUV and Schumann-Runge forcing within the thermosphere during

sunspot maximum and minimum. One hundred and twelve diagrams exceed

the tolerance of most editors, and generally interfere with the con-

venient reading of a paper. However, for specialists these diagrams

are of considerable use. We have, therefore, prepared this report

wherein the above mentioned diagrams are presented as a supplement

to our paper.

II. Brief Description of Results

In view of the non-separability of the tidal equations in the

thermosphere, the use of the term, Hough mode, is by no means un-

ambiguous. What we shall mean by the term is that configuration of

fields in the thermosphere forced by an upcoming wave at 100 km con-

sisting in that Hough mode alone. Note that Rough modes in the
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conventional sense (Chapman and Lindzen, 1970) are well defined at

100 km. To distinguish the Hough mode in the thermosphere from the

conventionally defined Hough mode, we will use the term, Hough mode

extension, (HNE). Computational details are given in Hong and Lindzen

(1976), which is included as an appendix.

Figures la, 2a, 3a, and 4a show the vertical variation of the

amplitude of the 2,2 Hough mode extensions, at various latitudes at

sunspot minimum, for the temperature, northerly velocity, westerly

velocity and vertical velocity fields, respectively; while Figures

lb, 2b, 3b, and 4b show the vertical variation of the phase of the

2,2 Hough mode extension (HME) in each of these fields for the same

latitudes and sunspot conditions. Figures 5-8 show the same quantities

at sunspot maximum. The assumed conditions at sunspot maximum and

minimam are described in Hong and Lindzen (1976). Note that for a

given HME, all amplitudes are arbitrary to within a single constant

factor (appropriate to all fields to all altitudes and latitudes) while

all phases are arbitrary to within a single constant phase displacement.

In other words, Figures 1-8 give only relative amplitudes and phases

for the 2,2 HME under sunspot minimum and maximum conditions. Figures

1-8 offer results for only a limited number of latitudes (00, 150,

300, 450, and 600). In order to aid the reader in interpolating these

results to other latitudes we present in Figures 9-12 the variations of

amplitudes and phases with latitude at specific altitudes. These

altitudes have been chosen as representative of the lower and upper

thermosphere and of an intermediate level. Results are shown for

both sunspot maximum and minimum conditions. All amplitudes in

3



Figures 9-12 have been normalized by maximum values at a given

altitude. Hence, these values must be calibrated by values from

Figures 1-8. Figures 9-12 show clearly the extent to which non-

separability affects HME's in the thermosphere. In classical tidal

theory (Chapman and Lindzen, 1970) latitudinal structures are in-

dependent of altitude and phases are independent of latitude.

The conterparts of Figures 1-12 for the 2,3 HM are shown in

Figures 13-24. Note that since the 2,3 mode is antisymmetric about

the equator, temperature, westerly velocity and vertical velocity

amplitudes are zero at the equator while northerly velocity amplitudes

are non-zero there. The counterparts of Figures 1-12 for the 2,4

HME are shown in Figures 25-36, and the counterparts for the 2,5 mode

are shown in Figures 37-48.

A caveat is in order concerning accuracy. The calculations used

for this report had somewhat better numerical resolution than those in

Hong and Lindzen (1976). Nevertheless, we estimate tha accuracy of

our results for the 2,2 and 2,3 HME's to be only 5 % of maximum

values at any altitude; for the 2,4 and 2,5 HME's the corresponding

accuracy is only about 10%. We believe these accuracy estimates

to be conservative. However, small relative amplitudes at any given

altitude are naturally suspect, as are the phases corresponding to

such small relative amplitudes. In most practical problems, this

should be of little consequence.

Finally, in Figures 49-52 we show the amplitudes and phases

of the semidiurnal tidal fields, as functions of height at various

latitudes, due to in situ thermospheric forcing at sunspot minimum.
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Figures 53-56 give the corresponding results for sunspot maximum. The

heating functions are described in Hong and Lindzen (1976). For

sunspot maximum we used the lower values for the flux in the Schumann-

Runge continuum. We approximated the latitude dependence of the in

situ heating by a classical 2,2 Hough function. This, in fact,

accounts for the bulk of the heating; and since the resulting amplitudes

are, in general, relatively small, we do not feel that the corrections

to our simple heating structure will prove significant. Similarly,

we have not included any detailed latitude destributions of in situ

response. In general, this response is very smooth and interpolation

directly from Figures 49-56 should prove adequate.

III. Remarks

As already noted in Hong and Lindzen (1976), as concerns

height of maximum amplitude, attenuation of amplitude from maximum

to top of thermosphere, and phase variation with height, the 2,2 and

2,3 modes are quite similar and would be hard to distinguish at a

single station. The same degree of similarily exists between the

2,Y and 2,5 modes. It is not so surprising that essentially similar

modes should occur in pairs differing only in symmetry.

IV. Applications

The main use of the present report will be to deduce global

implications from observations of semidiurnal tides at a few stations.

An example of how this may be done may be found in a recent paper

(Lindzen, 1976) wherein lower thermospheric data from Millstone Hill

(46.60N), St. Santin (45cN) and Arecibo (18N) were used to determine

the amplitudes and phases of the 2,4 and 2,5 modes which dominate the
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semidiurnal tide below 120 km. Lindzen (1976) used classical Hough

modes, whereas with the present work it will be possible to repeat

this work with the more appropriate Hough mode extensions. It is

our intention to use data from the above stations for the upper and

lower thermosphere to deduce the amplitudes and phases of all the HIME's

in this report, using the following procedure:

(1) It is now well established that the semidiurnal tide in the

lower thermosphere is dominated by the 2,4 and 2,5 modes. Thus data

from these levels may be used to calibrate these NE's in a manner

entirely analogous to that used in Lindzen (1976).

(2) Using results in this report for the thermospherically-forced

semidiurnal tide (Figures 48-56), the results from item 1 above, and

the 2,4 and 2,5 RHME's from this report, we can calculate the combined

contribution from in situ forcing and the 2,4 and 2,5 modes to the

semidiurnal tide in the upper thermosphere where the 2,2 and 2,3

modes assume considerable prominence. Thus, the difference between

the above contributions and upper thermospheric observation will

permit us to evaluate the contributions from the 2,2 and 2,3 modes

forced from below the thermosphere.

(3) The results from item 2, above, can be used to improve the

results from item 1, above, and so on.

The above observationally based estimates will permit not only

the generation of global models on the basis of limited observations,

but will also provide reasonable tests of the predictions provided

by models for the generation of tides in the lower atmosphere such

as that of Lindzen and Hong (1974).
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A complete picture of daily variations in the thermosphere will

require a knowledge of the diurnal as well as the semidiurnal tide

in the thermosphere. The former will not require any counterpart

of the present semidiurnal HIE's because it can be shown that the

diurnal tide in the thermosphere is almost entirely forced in situ

(Lindzen, 1971), primarily by EUV absorption. One of the present

authors (J. Forbes) is currently completing a calculation of the

thermospherically-forced diurnal tide similar to the calculations of

Hong and Lindzen (1976) for the semidiurnal tide. It is hoped that

the diurnal caculations will be sufficiently accurate to improve

our current knowledge of the EUV flux, and hence, among other things,

improve our calculations of the thermospherically-forced semidiurnal

tide.
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